

State of Michigan

 (SOM)

Systems Engineering Methodology
Version 1.2

The Systems Engineering Methodology (SEM) of the
State Unified Information Technology Environment (SUITE)

September 2008

Michigan Department of Information Technology

 Preface

September 2008 Preface Page ii

PREFACE

The initial development of the State of Michigan Systems Engineering Methodology (SEM) was
published in April 2007, and was performed as part of a continuing effort to improve the quality,
performance, and productivity of State of Michigan information systems. Development of the SEM was
governed by the Michigan State Unified Information Technology Environment (SUITE) initiative.

The purpose of SUITE is to standardize methodologies, procedures, training, and tools for project
management and systems development lifecycle management throughout the Michigan Department of
Information Technology (MDIT) in order to implement repeatable processes and conduct development
activities according to Capability Maturity Model Integrated (CMMI) Level 3 requirements. A formal
enterprise level support structure will be created to support, improve and administer SUITE, SEM,
Project Management Methodology, and related enterprise initiatives. Until that structure is in place,
questions regarding SEM should be sent to the SUITE Core Team at SUITE@michigan.gov where they
will be addressed by a rotating matrixed team.

This SEM replaced in total the former State of Michigan Systems Development Lifecycle (SDLC)
document dated November 2001 and related templates.

 Preface

September 2008 Preface Page iii

ACKNOWLEDGEMENTS

The State of Michigan would like to thank the following individuals and organizations that made this
version of the State of Michigan Systems Engineering Methodology possible. Without their input,
dedication and hard work, this would not have been achieved.

MICHIGAN DEPARTMENT OF INFORMATION TECHNOLOGY (MDIT)
PROJECT SPONSORS AND MANAGEMENT

Kenneth D. Theis, Senior Chief Deputy Director-
MDIT (Executive Sponsor)

Carol Steffanni, Deputy Director-MDIT, Bureau
of Strategic Policy (Executive Sponsor)

Lynn Draschil, Senior Deputy Director-MDIT
Bureau of Agency Services

Joel Storchan, Director-Office of Standards and
Contract Management, MDIT Bureau of Strategic
Policy

Linda Pung, Information Officer-MDIT Bureau
of Agency Services

Scot Ellsworth, State Department Administrator,
MDIT Office of Enterprise Architecture

Nancy Presocki, State Division Administrator,
MDIT Bureau of Agency Services

Virginia Hambric, State Division Administrator,
MDIT Agency Services-Human Services and
MiCSES

Dan Buonodono, Project Management Specialist,
MDIT Project Management Resource Center

PRODUCTION RELEASE (April 2007)

Dan Buonodono, Project Management Specialist,
MDIT Project Management Resource Center

Virginia Hambric, State Division Administrator,
MDIT Agency Services-Human Services and
MiCSES

Leigh A. Scherzer, Account and Project Manager,
Dedicated Customer Unit, MDIT Agency
Services-Department of Labor & Economic Growth.

W. Steve Wensko, Operations Manager,
Operations Systems Section, MDIT Agency
Services-Transportation

Paul Perla, Team Lead, MDIT-Employee and
Financial Services, Human Capital Management

James “Rock” Rakowski, State Administrative
Manager, Agency Liaison Section, MDIT Office
of Enterprise Security

Shawn M. Bauman, Special Projects Analyst,
MDIT Agency Services-Department of Human
Services and MiCSES

Donna Sivaraman, Programming Services
Manager, MDIT Agency Services-Treasury

Kyle Wilson, IT Specialist, Quality Assurance
Team, MDIT Agency Services-Transportation

Jerry Morey, State Administrative Manager,
Planning and Solutions Development, MDIT
Infrastructure Services – Data Center Operations

Samuel Roberts, IT Manager, Application
Development, MDIT Agency Services-Natural
Resources and History, Arts & Libraries

Mark Breithart, IT Specialist, Application
Development, MDIT Agency Services-
Environmental Quality

Fred Moye, IT Programmer/Analyst, MDIT
Agency Services-Michigan State Police

Sandy Cain, Forms Officer, MDIT Office
Automation-Technical Training

Robert Surber, State Division Administrator,
MDIT-Center for Geographic Information

Dave Archer, Manager, Design Section,
Infrastructure Services, MDIT Office
Automation-Design and Delivery Division

Dave Reicosky, Project Manager, MDIT P. Michael Spagnuolo, IT Manager, Application

 Preface

September 2008 Preface Page iv

Infrastructure Services – Telecommunications Programming Support Services, MDIT Agency
Services-Department of State

Randy Leyrer, Development Services Manager,
MDIT Agency Services-Department of Treasury

Lucy Pline, Technical Manager, MDIT Agency
Services-e-Michigan Web Development Division

Allan DeKoninck, PMP, IT Manager, Data
Warehouse and Database Team, MDIT Agency
Services-Community Health

Patty Whitlock, Departmental Analyst, Analysis
& Review Team, MDIT Agency Services-
Human Services and MiCSES

Tanis S. Lerash, PMP, IT Manager, MDIT
Agency Services-Civil Service, DMB, DMB
Retirement

Sue Tomes, Departmental Manager, Analysis &
Review Team, MDIT Agency Services- Human
Services and MiCSES

Rose Johnson-King, Information Security Specialist,
MDIT Office of Enterprise Security-
Communications, Awareness, Homeland Security

Michael Shanahan, Director, MDIT Agency
Services-e-Michigan Web Development Division

Bryan Farr, IT Specialist, Application
Development and Support, MDIT Agency
Services-Michigan State Police and Department
of Military and Veterans Affairs

Steve Ezzo, IT Specialist, MAIN-FACS Section,
MDIT Agency Services-Management and Budget

Kirt Berwald, Director, Field Services Division,
MDIT Infrastructure Services

Terry O'Neill, IT Manager, Business Services,
MDIT Infrastructure Services

Aparna Agrawal, Director, Technical Services,
MDIT Infrastructure Services

Sara Kanya, State Administrative Manager,
Enterprise Platform Services, MDIT
Infrastructure Services – Data Center Operations

Bob McDonough, State Administrative Manager,
MDIT Office of Enterprise Architecture

Benjamin T. Kinsey, Information Systems
Analyst, Project Development Section, MDIT
Agency Services-Transportation

ORGANIZATIONS
STATE OF MICHIGAN – DEPARTMENT OF INFORMATION TECHNOLOGY

U.S. DEPARTMENT OF ENERGY – OFFICE OF THE CHIEF INFORMATION OFFICER

The SEM Development Teams owe a large debt to Brenda Coblentz of the U.S. Department of Energy
(DOE) for both her encouragement in our efforts and for permitting us the free use of the DOE’s own
CMMI Level 3 compliant SEM as a basis for this document. In particular, much of this document draws
directly from the DOE’s Systems Engineering Methodology, which as of March 30, 2007 can be found
at (http://cio.energy.gov/documents/SEM3_1231.pdf).

 Table of Contents

Chapter Page

September 2008 Table of Contents Page v

Chapter: 1.0 Introduction.. 1
Section: 1.1 Enterprise Implementation of the Methodology .. 3

Task: 1.1.1 Enterprise Process Management ... 4
Task: 1.1.2 Enterprise Curriculum... 5
Task: 1.1.3 Quality Oversight.. 7

Section: 1.2 Project Implementation of Methodology ... 8
Section: 1.3 Submitting Change Requests ... 9

Chapter: 2.0 Lifecycle Model ... 10
Section: 2.1 Project Sizes... 14
Section: 2.2 Adapting the Lifecycle... 16

Section: 2.2.1 Tailoring Guidance .. 20

Section: 2.2.2 Work Type Definitions ... 24
Section: 2.3 Development Techniques... 29
Section: 2.4 Commercial-Off-The-Shelf (COTS) Products Based Projects 34
Section: 2.5 Quality Reviews... 40

Chapter: 3.0 Initiation and Planning Stage ... 43
Activity: 3.1 Develop Software Configuration Management Plan ... 48
Activity: 3.2 Develop Maintenance Plan .. 51

Chapter: 4.0 Requirements Definition Stage .. 53
Activity: 4.1 Requirements Management ... 58

Task: 4.1.1 Develop Requirements Traceability Matrix.. 60
Activity: 4.2 Select Requirements Analysis Technique.. 61
Activity: 4.3 Define System Requirements... 62

Task: 4.3.1 Define Functional Requirements .. 64
Task: 4.3.2 Define Input and Output Requirements .. 65
Task: 4.3.3 Define Performance Requirements ... 66
Task: 4.3.4 Define User Interface Requirements... 67
Task: 4.3.5 Define System Interface Requirements .. 68
Task: 4.3.6 Define Communication Requirements.. 69
Task: 4.3.7 Define Computer Security and Access Requirements 70
Task: 4.3.8 Define Backup and Recovery Requirements .. 72
Task: 4.3.9 Define Preliminary Implementation Requirements 73

Activity: 4.4 Compile and Document System Requirements ... 75
Activity: 4.5 Develop System Test Requirements .. 76

Task: 4.5.1 Identify Test Techniques... 78
Task: 4.5.2 Identify Test Phases .. 79
Task: 4.5.3 Identify Test Environment Requirements... 80

Activity: 4.6 Develop Acceptance Test Requirements ... 81
Activity: 4.7 Establish Functional Baseline .. 83

Chapter: 5.0 Functional Design Stage .. 84

 Table of Contents

Chapter Page

September 2008 Table of Contents Page vi

Activity: 5.1 Determine System Structure .. 89
Task: 5.1.1 Identify Design Entities .. 90
Task: 5.1.2 Identify Design Dependencies .. 91

Activity: 5.2 Design Content of System Inputs and Outputs .. 92
Activity: 5.3 Design User Interface .. 93

Task: 5.3.1 Design Menu Hierarchy.. 95
Task: 5.3.2 Design Data Entry Screens ... 97
Task: 5.3.2 Design Data Entry Screens ... 97
Task: 5.3.3 Design Display Screens .. 98
Task: 5.3.4 Design Online Help .. 100
Task: 5.3.5 Design System Messages.. 102

Activity: 5.4 Design System Interfaces... 104
Activity: 5.5 Design System Security Controls .. 105
Activity: 5.6 Build Logical Model .. 106
Activity: 5.7 Build Data Model... 107
Activity: 5.8 Develop Functional Design.. 109

Task: 5.8.1 Develop Functional Design Document... 110
Task: 5.8.2 Conduct Functional Design Review ... 111

Activity: 5.9 Select System Architecture .. 115
Task: 5.9.1 Evaluate System Architecture Alternatives .. 117
Task: 5.9.2 Recommend System Architecture... 119

Chapter: 6.0 System Design Stage.. 121
Activity: 6.1 Design Specifications for Modules.. 126
Activity: 6.2 Design Physical Model and Database Structure .. 128
Activity: 6.3 Develop Integration Test Considerations... 129
Activity: 6.4 Develop System Test Considerations .. 131
Activity: 6.5 Develop Conversion Plan .. 134
Activity: 6.6 Develop System Design... 136

Task: 6.6.1 Develop System Design Document .. 138
Task: 6.6.2 Conduct System Design Review... 139

Activity: 6.7 Develop Program Specifications.. 141

Chapter: 7.0 Construction Stage ... 143
Activity: 7.1 Establish Development Environment .. 148
Activity: 7.2 Develop Programs.. 149
Activity: 7.3 Conduct Unit Testing... 152
Activity: 7.4 Establish Development Baselines .. 154
Activity: 7.5 Plan Transition to Operational Status .. 155
Activity: 7.6 Generate Operating Documentation .. 157

Task: 7.6.1 Produce Users Manual .. 159
Task: 7.6.2 Produce Developer's Reference Manual ... 161

Activity: 7.7 Develop Training Plan ... 163
Activity: 7.8 Develop Installation Plan... 166

Chapter: 8.0 Testing Stage.. 167
Activity: 8.1 Conduct Integration Testing .. 172

 Table of Contents

Chapter Page

September 2008 Table of Contents Page vii

Activity: 8.2 Conduct System Testing .. 174
Activity: 8.3 Conduct User Acceptance Testing... 176

Chapter: 9.0 Implementation Stage .. 179
Activity: 9.1 Perform Installation Activities... 183
Activity: 9.2 Conduct Installation Tests.. 184
Activity: 9.3 Transition to Operational Status .. 185

Appendix A – Systems Engineering Methodology Glossary ... 189

Appendix B – SEM Templates, Checklists and Guides ... 203

Appendix C – Investigate Alternatives ... 205

Appendix D – List of Acronyms... 209

Appendix E – Roles and Responsibilities... 210

Document Revisions

The following information is used to control and track modifications made to this document.

Revision Date Section(s) Summary

September, 2007 Throughout the
document.

Fixed some grammatical errors. Other minor adjustments,
including a few changes to the SEM Overview Diagram.

September, 2008 Add Appendix E

Appendix E provides basic guidance on the roles
responsible for completing SEM forms and other work
products. Updated the title page and footers to reflect the
new version number and date.

 Exhibits

Exhibits Page

September 2008 Exhibits Page viii

Exhibit 2.0-1 SEM Overview Diagram ... 13
Exhibit 2.1-1 Information Systems Project Sizes ... 15
Exhibit 2.2-1 Adapting the Lifecycle ... 19
Exhibit 2.4-1 Example of SEM Adapted for COTS Projects.. 39
Exhibit 3.0-1 SEM Overview Diagram – Initiation and Planning Stage Highlighted 47
Exhibit 4.0-1 SEM Overview Diagram – Requirements Definition Stage Highlighted.................... 57
Exhibit 5.0-1 SEM Overview Diagram – Functional Design Stage Highlighted............................... 88
Exhibit 6.0-1 SEM Overview Diagram – System Design Stage Highlighted 125
Exhibit 7.0-1 SEM Overview Diagram – Construction Stage Highlighted 147
Exhibit 8.0-1 SEM Overview Diagram – Testing Stage Highlighted ... 171
Exhibit 9.0-1 SEM Overview Diagram – Implementation Stage Highlighted 182

 Industry Sites

September 2008 Industry Sites
 Page ix

Industry Sites1

Carnegie Mellon University Software Engineering Institute............................ http://www.sei.cmu.edu

International Council on Systems Engineering..http://www.incose.org

Project Management Institute ..http://www.pmi.org

Quality Assurance Institute...http://www.qaiworldwide.org/

1 Addresses are as of February 2007

Chapter 1.0 Introduction

September 2008 Introduction Chapter 1
 Page 1

Chapter: 1.0 Introduction

Description: The Systems Engineering Methodology (SEM) of the State Unified Information

Technology Environment (SUITE) provides guidance for information systems
engineering related project management activities and quality assurance practices
and procedures. The primary purpose of the methodology is to promote the
development of reliable, cost-effective, computer-based solutions while making
efficient use of resources. Use of the methodology will also aid in the status
tracking, management control, and documentation efforts of a project.

 Development of the SEM was governed by the Michigan State Unified

Information Technology Environment (SUITE) initiative.

 The purpose of SUITE is to standardize methodologies, procedures, training, and

tools for project and systems development lifecycle management throughout the
State of Michigan Department of Information Technology (MDIT) in order to
implement repeatable processes and conduct development activities according to
Capability Maturity Model Integrated (CMMI) Level 3 requirements.

 This information system engineering methodology is consistent with other

methodologies used in State and Federal Governments and private industry. It
complies with State of Michigan policy on project management, software
configuration management, security, and records management. It should be used
in conjunction with all State of Michigan information management programs and
initiatives.

 It is important to differentiate between a project management methodology and

a system engineering methodology. A project management methodology covers
all the things a project manager needs to do regardless of whether the project is
a software development, package selection, or relocation of a work unit.

 The State of Michigan Project Management Methodology (PMM) covers standard

areas of project management (Cost Management, Risk Management, Scope
Management, Resource Management, Communications Management, Quality
Management, Time Management, Procurement Management, and Integration
Management) and purposely does not include the separate concepts and
requirements of system engineering, leaving that to be included in the SEM.
Conversely, this SEM does not reiterate the standards of project management,
instead referring to the PMM as appropriate.

 The PMM is the methodology for management of the work effort. The SEM is

the step-by-step development of the software application.

 The State of Michigan has a consistent project management methodology in place

which can be used for all types of projects. The State of Michigan now also has a
consistent system engineering methodology that is a companion to the project
management methodology.

Chapter 1.0 Introduction

September 2008 Introduction Chapter 1
 Page 2

 In this way, people can move comfortably from applications development, to

infrastructure roll out, to software selection to even relocating to new buildings
using the same approach throughout the organization.

 Significant input for the methodology was obtained from information

management programs throughout the State. The methodology integrates State of
Michigan best practices and focuses on the quality of both the systems
engineering process and the work products generated from the process.

 The SEM is derived from the principles and standards advocated by information

management industry leaders, such as The Institute of Electrical and Electronics
Engineers (IEEE), the Carnegie Melon Software Engineering Institute (SEI), and
the Department of Energy (DOE). This methodology is designed to enable State
of Michigan project teams to achieve Level 3 maturity on the SEI Capability
Maturity Model Integrated (CMMI).

 Quality assurance is integrated into the methodology, making quality the

responsibility of all project managers and team members. To assure the
development of quality products, the methodology prescribes reviews,
inspections, and audits for the lifecycle processes and technical work products. To
protect the integrity of information systems, the methodology also prescribes
configuration controls over system components, data, and technical
documentation.

 The methodology encompasses the aspects of the information systems

engineering project lifecycle, from project planning through production and
maintenance, and integrates basic lifecycle management concepts (Exhibit 2.0-1
SEM Overview Diagram on page 13).

The SEM is intended to be used by individuals, project teams, and managers who
are responsible for developing a new computer-based solution or effecting
changes to an existing system. The methodology, including its templates, is
reviewed on a regular basis and will be modified as needed to keep pace with the
changing needs of State of Michigan information systems engineering
environment and the continuing technical advances in the information systems
industry. As a result of the reviews, it is anticipated that a new release of the SEM
will be issued within 12 months of the initial release date.

The following sections provide additional information about using the SEM.

1.1 Enterprise Implementation of the Methodology
1.2 Project Implementation of Methodology
1.3 Submitting Change Requests

1.1 Enterprise Implementation of the Methodology Introduction

September 2008 Introduction Chapter 1
 Page 3

Section: 1.1 Enterprise Implementation of the Methodology

Description: While the focus of the SEM is at the project level (see Section 1.2, Project

Implementation of Methodology), it is recognized that there must be an
enterprise-wide ability for managing information systems development,
integration, and maintenance processes and quality oversight to ensure the
delivery of high-quality products. Within this context, an agency is a State of
Michigan unit, (e.g., a State of Michigan department or bureau, within which,
generally, many projects are managed). The SEM integrates systems and
infrastructure project management and quality assurance practices and is designed
to be flexible. It can be adapted to accommodate the specific needs of any
information systems engineering organization and all computing platforms used
in the State. With adoption of the SEM as the State of Michigan standard process
for developing and maintaining systems, any additional specific or unique
management processes should be integrated into the organization to help project
managers and technical staff perform more effectively.

 In a mature organization, the processes are institutionalized. They are

documented, reusable, and consistent with the way the work is actually
accomplished. The process definitions are updated when necessary, and
improvements are applied when appropriate, with broad-based active involvement
across the organization. Roles and responsibilities are clear and communicated
throughout projects and across the organization. Enterprise-wide training ensures
personnel are well trained so they can perform their roles effectively and
efficiently.

 The following tasks describe processes and activities complementary to those at

the project level and aimed at maturing the entire enterprise in terms of capability
to deliver high quality products.

Resource: Carnegie Mellon University, Software Engineering Institute, Capability Maturity

Model: Guidelines for Improving the Software Process, Addison Wesley
Longman, Inc., 1994

Tasks: The following tasks are involved in enterprise implementation of the SEM.

1.1.1 Enterprise Process Management
1.1.2 Enterprise Curriculum
1.1.3 Quality Oversight

1.1 Enterprise Implementation of the Methodology Introduction

September 2008 Introduction Chapter 1
 Page 4

Task: 1.1.1 Enterprise Process Management

Description: The goal of this task is to establish the State’s responsibility for lifecycle process

activities that improve its overall capability. The State provides long-term
commitments and resources to coordinate the development and maintenance of
the process across current and future projects.

 With MDIT’s adoption of the SEM, it became the state-wide enterprise process

for systems development. The SUITE Core Team will periodically assess its
processes and develop an action plan for improvement. Changes to the process are
then communicated to those individuals within the State responsible for
implementing the process.

 New processes, methods, and tools in limited use in the State are to be monitored,

evaluated, and, where appropriate, transferred to other parts of the MDIT
organization. The major component of Enterprise Process Management is the
Enterprise Repository.

 Enterprise Repository

 It is anticipated that the SUITE Core Team will create, manage and control a

repository to collect and make available data on the systems engineering process
and resulting work products, (e.g., productivity data, quality measurements, and
estimates of size, effort, and cost). It is anticipated that the repository will serve to
improve project management planning and estimating by providing a resource for
future systems engineering efforts. The repository will also establish and control a
statewide library of systems process-related documentation including policies and
procedures that will serve as a path to achieving CMMI Level 3. The library will
be cataloged for easy reference and the contents made available for use by project
teams and other systems-related groups. Library contents are to be updated as
appropriate.

Work Products: An action plan is to be developed based on the periodic assessments. The action

plan will identify guidelines for implementing the changes to address specified
assessment findings and assigns responsibility for implementing changes.

 An improvement plan is to be developed and maintained for process development

and improvement activities. The plan uses the action plan and other improvement
initiatives as primary input. The plan defines and schedules activities to be
performed, assigns responsibility and identifies resources required for
implementing the plan.

 It is anticipated that a repository will be established for enterprise process and

data (metrics) information. DIT staff will be trained in the use of, and have
controlled access to, the repository.

Review Process: Conduct structured walkthroughs for each of the written work products to remove

as many defects as possible.

1.1 Enterprise Implementation of the Methodology Introduction

September 2008 Introduction Chapter 1
 Page 5

Task: 1.1.2 Enterprise Curriculum

Description: An organization that is well prepared for the challenges posed by information

systems engineering projects must ensure that its personnel are well trained to
perform their roles effectively and efficiently. The goal of this task is to describe
the areas of training that must be addressed to ensure the State of Michigan has a
documented process in place to manage training activities on an ongoing basis.

 The process shall be based on documented enterprise training standards. The

standards should include how courses are to be developed (or standards that must
be met where courses are procured) and how they are to be maintained according
to these standards. Members of the training group (or vendors if training is
acquired) need to have the necessary skills and knowledge to perform their
training activities.

 When determining the skills and knowledge needed for a project, the project

teams are responsible for identifying their unique needs. Each project needs to
evaluate its current and future skill needs and determine how these skills will be
obtained. Some skills may be imparted through informal vehicles (e.g., on-the-job
training, mentoring,) while other skills may need more formal training vehicles
(e.g., classroom, self-study.) Appropriate vehicles need to be selected and used.

 Responsibility for training needs to be identified and communicated. It may lie

with a single manager within the organization, or may be shared by several
managers, each responsible for one or more knowledge areas or subjects. The
specific enterprise responsibility for training needs to be identified, documented,
and available for viewing by staff.

Waiver Process: A waiver procedure for required training needs to be established and used to

determine whether staff already possesses the knowledge and skills to perform
their jobs.

Measurements: Measurements need to be identified, collected, and used to assess the status of

training activities. Measurements should address areas such as the quality of the
training, and if it meets the needs of the staff. Measurements and the enterprise
training should be reviewed with management on a regular basis. (In this context,
“measurement” is not meant to be CMMI Level 4.)

Work Products: A written training policy describing how the State of Michigan will meet training

requirements needs to be developed, communicated, and followed. The policy
needs to be periodically reviewed and revised as appropriate based on feedback
collected.

 A written training plan that addresses how the training needs of the State of

Michigan will be met. The plan should include information such as how training
needs will be identified, what training is required, how training will be delivered,
the cost and resources required, enterprise placement of the training function,

1.1 Enterprise Implementation of the Methodology Introduction

September 2008 Introduction Chapter 1
 Page 6

 who will be involved, when and how the plan will be reviewed and revised, and a
work breakdown structure that identifies all of the activities involved.

 Maintain records that training has been conducted and completed waivers, if and

where appropriate.

Note: A written training plan should be developed for each project and a training

program should be developed for system implementation and operation.

Review Process: Conduct structured walkthroughs for each of the written work products to remove

as many defects as possible.

1.1 Enterprise Implementation of the Methodology Introduction

September 2008 Introduction Chapter 1
 Page 7

Task: 1.1.3 Quality Oversight

Description: The goal of this task is to establish the enterprise responsibility for the quality

oversight of information technology investments. While the lifecycle process
activities for project implementation and maintenance are documented within the
lifecycle stages of the SEM, an enterprise quality oversight program provides
long-term commitments and resources to coordinate the quality activities across
current and future projects.

 The quality oversight program should implement the appropriate level of

management effort, and assume responsibility, accountability, and oversight for
continued quality management process compliance within the organization. The
quality oversight program should identify standards and best practices for product
development, and ensure appropriate safety and security controls are in place, are
effective, and reflect current accepted industry practices. The program should also
ensure that project teams are aware of current State of Michigan computer and
cyber security directives and have coordinated the project with computer security
staff.

Work Products: A written quality oversight program describing how the organization will ensure

the development of high quality information technology investments needs to be
developed, communicated, and followed. The program needs to be periodically
reviewed and revised as appropriate based on feedback collected.

 The program should identify a point of contact for managing quality oversight and

ensuring project risk assessments are conducted to determine the appropriate level
of quality assurance activities to be applied. The program should ensure the level
of quality assurance is tailored to the site and project needs. The oversight
program should oversee the development and implementation of quality assurance
processes and procedures, and ensure the development and implementation of
project quality assurance plans and production and delivery of quality products.

Review Process: Conduct a structured walkthrough of the quality oversight program to remove as

many defects as possible.

1.2 Project Implementation of Methodology Introduction

September 2008 Introduction Chapter 1
 Page 8

Section: 1.2 Project Implementation of Methodology

Description: SUITE will integrate information systems engineering, project management and

quality assurance practices and is designed to be flexible. It can be adapted to
accommodate the specific needs of any information systems project and all
computing platforms used in the State of Michigan including standalone and
networked mainframes, servers, desktops, and other computers.

Projects that were initiated prior to the awareness or usage of this document
should plan to implement the methodology at the earliest feasible stage or the next
release of the product. If a Project Plan already exists, make the revisions
necessary to integrate the systems engineering, project management, and quality
assurance practices, as appropriate. If a Project Plan does not exist, develop a plan
that summarizes the activities and deliverables of the previous stages and
incorporates the methodology activities and products into the subsequent stages.

The information systems engineering methodology presented here does not
supersede, replace, or override more stringent requirements that may apply to
specific projects such as scientific and technical practices, and security and safety
issues.

Questions: If specific questions are generated concerning the interpretation or applicability of

portions of the methodology, the project team should attempt to resolve them
during the project review activities built into the stages of the lifecycle. The
system owner/user(s) and other project stakeholders must concur with any
adaptations that are made.

When questions about interpretation or applicability of the guidance to a specific
project cannot be resolved by the project team, the issue should be submitted to
the site authority for information systems engineering, such as the team leader,
supervisor, manager, or MDIT Client Services Director, for advice or resolution.
SUITE Core Team staff may also be consulted on the interpretation or
applicability of the methodology by sending e-mail to SUITE@michigan.gov.

1.3 Submitting Change Requests Introduction

September 2008 Introduction Chapter 1
 Page 9

Section: 1.3 Submitting Change Requests

Description: The SEM environment is continuously changing as emerging technologies are

integrated into projects, system owner/user requirements are expanded, and
enterprise needs evolve. The SEM will be revised, as needed, to reflect changes in
the environment, improvements suggested through user feedback, and the
maturation of information systems engineering capabilities.

Users of the methodology are encouraged to submit suggestions for improving its
content and to report any practices that are difficult to understand or create an
implementation problem for a project team.

Suggestions and problems should be submitted on the SEM Change Request
Form DIT-0181 that is available on the DIT TechTalk and SUITE websites. The
form contains the accompanying instructions for guidance on completing this
form.

The SEM Change Request Form should be submitted to the SUITE Core Team
via e-mail at SUITE@michigan.gov. All requests will be evaluated and the
originator of the request will be notified of the action taken.

Some requests will be handled immediately while others may require
investigation by an ad hoc working group of knowledgeable personnel. In some
cases, a request may not be appropriate for the current environment, but will be
retained for future consideration.

Chapter 2.0 Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 10

Chapter: 2.0 Lifecycle Model

Description: This chapter describes the lifecycle model used for the SEM. This model

partitions the information systems engineering lifecycle into seven major stages,
as shown in Exhibit 2.0-1, SEM Overview Diagram on page 13. Each stage is
divided into activities and tasks, and has a measurable end point (Stage Exit). The
execution of all seven stages is based on the premise that the quality and success
of the product depends on a feasible concept, comprehensive and participatory
project planning, commitments to resources and schedules, complete and accurate
requirements, a sound design, consistent and maintainable construction
techniques, and a comprehensive testing program. The lifecycle stages and
activities are described in the following chapters.

Intermediate work products are produced during the performance of the activities
and tasks in each stage. These work products are inspected and can be used to
assess system integrity, quality, and project status. As a result, adequacy of
requirements, correctness of designs, and quality of the products become known
early in the effort.

At least one time for each work product, a Structured Walkthrough (SWT) is
performed. A Structured Walkthrough is an organized procedure for reviewing
and discussing the technical aspects of systems or software engineering work
products including documentation. The walkthrough is usually conducted by a
group of peers and may include reviewers outside the developer’s immediate peer
group. The Structured Walkthrough Process Guide provides detailed process
information. This document is available on the MDIT SUITE website.

At the conclusion of each stage, a Stage Exit is initiated to review the work
products of that stage and to determine whether to proceed to the next stage,
continue work in the current stage, or abandon the project. The approval of the
system owner and other project stakeholders at the conclusion of each stage
enables both the system owner and the project manager to remain in control of the
project throughout its life, and prevents the project from proceeding beyond
authorized milestones. The Stage Exit Process Guide provides detailed process
information. This document is available on the MDIT SUITE website.

 The end products of the lifecycle are the information system product, the data

managed by the system, associated technical documentation, and user training and
support. The end products and services are maintained throughout the remainder
of the lifecycle in accordance with documented configuration management
procedures.

The lifecycle model provides a method for performing the individual activities
and tasks within an overall project framework. The stages and activities are
designed to follow each other in an integrated fashion, whether the stages of
development are accomplished sequentially, concurrently, or cyclically. Project
teams have the flexibility to adapt the lifecycle model to accommodate a

Chapter 2.0 Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 11

particular development methodology (e.g., spiral development,) information
systems engineering technique (e.g., prototyping and rapid application
development,) or other project constraints.

The amount of project and system documentation required throughout the
lifecycle depends on the size and scope of the project. System documentation
needs to be at a level that allows for full system operability, usability, and
maintainability. Typically, projects that require at least one work-year of effort
should have a full complement of documentation. For projects that require less
than one work-year of effort, the project manager and system owner should
determine the documentation requirements. In addition, the project's security and
quality assurance criteria may require the performance of other activities and the
generation of additional documentation.

The requirements for documentation should not be interpreted as mandating
formal, standalone, printed documents in all cases. Progressive documents that
continuously revise and expand existing documentation, online documents, forms,
reports, electronic mail messages, and handwritten notes (e.g., informal
conference records) are some examples of alternative documentation formats.
Project managers should verify documentation standards within their sites.

The following sections provide additional information about the lifecycle model.

2.1 Project Sizes
2.2 Adapting the Lifecycle

2.2.1 Tailoring Guidance
2.2.2 Work Type Definitions

2.3 Development Techniques
2.4 Commercial-Off-The-Shelf (COTS) Products Based Projects
2.5 Quality Reviews

Bibliography: The following materials were referenced in the preparation of this chapter.

1. SLC Roadmap Document, Electronic Data Systems, Inc., 1991

2. Booch, G., Object-Oriented Analysis and Design, 2nd edition, Benjamin

Cummings, 1994.

3. Budd, T., An Introduction to Object-Oriented Programming, 2nd edition,
Addison-Wesley, 1996.

4. Carnegie Mellon University, Software Engineering Institute, Capability

Maturity Model: Guidelines for Improving the Software Process, Addison
Wesley Longman, Inc., 1994.

5. Carney, D, & Oberndorf, P. "The Commandments of COTS: Still Searching

Chapter 2.0 Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 12

for the Promised Land." Crosstalk 10, 5 (May 1997): 25-30.

6. Federal Acquisition Regulations. Washington, DC: General Services
Administration, 1996.

7. Jacobson, I., Object-Oriented Software Engineering, Addison-Wesley, 1992.

8. Meyers, Craig & Oberndorf, Tricia. Open Systems: The Promises and the

Pitfalls. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1997.

9. Open Systems Joint Task Force Baseline Study, 1996 [online].

10. Open Systems Joint Task Force Case Study of U.S. Army Intelligence and

Electronic Warfare Common Sensor (IEWCS), 1996 [online].

11. Pressman, Roger S., Software Engineering - A Practitioner’s Approach, 4th
edition, McGraw-Hill Companies, Inc., 1997.

12. Siy, Harvey, Identifying the Mechanisms to Improve Code Inspections Costs

and Benefits, 1996 [online].

13. Yourdon, Edward, Structured Walkthroughs, second edition, Yourdon Inc.,
New York, 1978.

Chapter 2.0 Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 13

Exhibit 2.0-1 SEM Overview Diagram

2.1 Project Sizes Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 14

Section: 2.1 Project Sizes

Description: The lifecycle model used in this information systems engineering methodology

can be applied to projects of varying sizes. In this model, projects are divided
into three sizes: large, medium, and small. Each project size uses the same
lifecycle stages. Medium and small projects may compress or combine stages and
required documentation in direct proportion to the size of the development effort.
The major differences between project sizes are determined by the following
items.

• The estimated total labor hours (the level of effort) required to complete

the project.

• The use of cutting edge or existing technology.

• The type and extent of both user and system interface requirements.

• The project's contribution to, and impact on, the activities carried out by

the system users and other Departmental organizations.

The requirements, constraints, and risks associated with the project also influence
the determination of project size. The project size and any plans for adapting the
lifecycle model are documented in the Project Plan, which is reviewed and
approved by the system owner and other project stakeholders.

The following subsections provide descriptions of the three project sizes used in
this lifecycle model. Exhibit 2.1-1, Information Systems Project Sizes, shows the
level of effort and complexity measures used to define the three sizes.

Large Projects: Large information systems engineering projects are included in the system

owner's organizational long-range plans. Department-wide and site-specific
projects are usually developed as large-sized projects and are likely to require a
major acquisition of hardware and software. Typically, the larger the size and
scope of the project, the greater the detail and coordination needed to manage the
project. As risk factors and levels of effort increase, the scope of project
management also increases and becomes a critical factor in the success of the
project.

2.1 Project Sizes Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 15

Medium Projects: Medium information systems engineering projects require less effort than large
projects, typically use existing hardware and software, and might not be captured
during the organizational long-range planning process. They are frequently
developed to automate operations within a programmatic office or among a
limited number of sites, and may be used to interface with other systems.
Planning medium size projects within the context of the system owner
organization's overall mission, and building in compatibility to the Departmental
IT environment can improve the product's ability to interface with other users,
organizations, and applications; and increase the product's longevity.

Small Projects: Small information systems engineering projects require minimal effort and use

existing hardware and software. The operational details of a small project can
easily be managed by the project manager, so formal documentation requirements
are limited. A project is small when the system being developed will have limited
functionality and use, meets a one-time requirement, or is developed using
reusable code.

Exhibit 2.1-1 Information Systems Project Sizes

Effort Required (in staff months)

Complexity
(and associated characteristics)

0-8

9-24

25-n

Low:

- Existing or known technology
- Simple interfaces
- Requirements well known
- Skills are available

Small

Small

Medium

Medium:

- Some new technology
- Multiple interfaces
- Requirements not well known
- Skills not readily available

Small

Medium

Large

High:

- New technology
- Numerous complex interfaces
- Numerous resources required
- Skills must be acquired

Medium

Large

Large

Note: Size is used as a guide to help determine the appropriate degree of project management, and
whether any stages may be combined for a given effort. Within this context, size is a combination of
level of effort required (all activities) and complexity of the requirements. Attributes of complexity
include technology, team skills, interfaces, and level of understanding of requirements. Other factors
that can influence adaptation include risk, visibility, and business impact.

2.2 Adapting the Lifecycle Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 16

Section: 2.2 Adapting the Lifecycle

Description: The SEM implements well-defined processes in a lifecycle model that can be

adapted to meet the specific requirements or constraints of any project. This
section provides guidelines for adapting the lifecycle processes to fit the
characteristics of the project. These guidelines help ensure that there is a common
basis across all projects for planning, implementing, tracking, and assuring the
quality of the work products.

The lifecycle model has built-in flexibility. All of the stages and activities can be
adapted to any size and scope information systems engineering project. The
lifecycle can be successfully applied to development projects, maintenance or
enhancements, and customization of commercial software. The lifecycle is
appropriate for all types of administrative, business, manufacturing, laboratory,
scientific, and technical applications. For scientific and technical projects,
adaptations to the lifecycle may be dictated by the project stakeholders or the
requirements for reporting technical results in formal reports or journal articles.

Adaptations: The lifecycle can be compressed to satisfy the needs of a small project, expanded

to include additional activities or work products for a large or complex project, or
supplemented to accommodate additional requirements, (e.g., security
requirements). Any modifications to the lifecycle should be consistent with the
established activities, documentation, and quality standards included in the
methodology. Project teams are encouraged to adapt the lifecycle as long as the
fundamental information systems engineering objectives are retained and quality
is not compromised.

The following are some examples of lifecycle adaptations:

• Schedule stages and activities in concurrent or sequential order.

• Repeat, merge, or simplify stages, activities, or work products.

• Include additional activities, tasks, or work products in a stage.

• Change the sequence or implementation of lifecycle activities.

• Change the development schedule of the work products.

• Combine or expand activities and the timing of their execution.

2.2 Adapting the Lifecycle Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 17

The lifecycle forms the foundation for project planning, scheduling, risk
management, and estimation. When a lifecycle stage, activity, or work product is
adapted, the change must be identified, described, and justified in the Project
Plan. The Project Plan is developed as a separate document and includes a
description of the systems development lifecycle, which is the organization’s
standard process.

Exhibit 2.2-1, Adapting the Lifecycle, shows how stages can be combined to
accommodate different size projects and information systems engineering
techniques. Notes are provided throughout the lifecycle stage chapters to identify
activities that have built-in project adaptation strategies. Adaptations should not
introduce an unacceptable level of risk and require the approval of the system
owner and other project stakeholders.

When adapting the lifecycle model, care must be taken to avoid the following
pitfalls:

• Incomplete and inadequate project planning.

• Incomplete and inadequate definition of project objectives and

requirements.

• Lack of a development methodology that is supported by information
systems engineering preferred practices and tools.

• Insufficient time allocated to complete design before coding is started.

• Not defining and meeting criteria for completing one lifecycle stage before

beginning the next.

• Compressing or eliminating testing activities to maintain an unrealistic
schedule.

Sample
Statements: The following are sample statements that can be used in the Project Plan to

describe different types of lifecycle adaptations. The first example shows a
scenario where the Concept Document will not be developed in the Initiation and
Planning Stage.

A Concept Document will not be developed for this project. The need for the
product has been documented in several organizational reports and was included
in the fiscal year long-range plans. The platform for the project is currently used
for all applications owned by this organization. There are no known vendor
packages that will satisfy the functional requirements described by the system
owner.

2.2 Adapting the Lifecycle Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 18

The following is a sample statement that shows how work products from two
different stages can be combined into one deliverable.

The Functional Design and System Design documents will be combined into one
design document. A Stage Exit will be conducted when the design document is
completed. To reduce the risk associated with combining the two documents, the
project team will develop prototype screens and reports for review and approval
by the system owner/user(s) as the prototypes are developed.

The following is a sample that shows how the seven lifecycle stages can be
compressed into five stages for a small project.

This project will require 10 staff months of effort to enhance an existing
application. The seven stages in the lifecycle will be combined into five stages as
follows: (1) Initiation and Planning, (2) Requirements and Design, (3)
Construction, (4) Testing, and (5) Implementation.

The following deviations will occur for document deliverables:

• A Concept Document and a Business Case will not be necessary due to the

restricted software and hardware platform.

• The Requirements Specification will be limited to the statement of
enhancement requirements.

• The Functional Design and System Design documents will be combined

into one design document.

• An amendment package will be developed for the existing Users Manual.

2.2 Adapting the Lifecycle Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 19

Exhibit 2.2-1 Adapting the Lifecycle

Large Project
Initiation &
Planning

Requirements
Definition

Functional
Design

System
Design

Construction Testing Implementation

 Iterative Development1

Medium Project
Initiation &
Planning

Requirements
Definition /
Functional
Design

System Design
/ Construction

Testing Implementation

Rapid Prototyping2

Small Project
Initiation &
Planning /
Requirements
Definition /
Functional and
System
Designs

Construction
and Testing

Implementation

 Project Management
Less More

Structured Walkthroughs should be performed for each major deliverable. Stage Exits should occur at
the end of each stage.

Note: Iterative development and rapid prototyping are optional techniques that can be used on
any size project.

1 Each iteration produces working function(s) from integrated program modules.
2 Iterations may produce any or all of requirements, system architecture, functional design, system
design.

2.2.1 Tailoring Guidance Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 20

Section: 2.2.1 Tailoring Guidance

Due to the large variation among system size and complexity, there is a need to
offer guidance to the project / development manager regarding which components
of the methodology, both project-based and product-based, are required.

The intent of this section is to provide flexibility in utilizing SEM components in
the systems development process. The focus here is to ensure that adequate
processes are used for each of the various types of systems engineering initiatives
– “using the right tool for the job.”

A small project which meets the criteria for SEM Express is typically straight-
forward in nature and estimated to be less than 100 effort hours (including both
systems development related and project management related hours). A large
project, which meets the criteria for the full SEM, is typically complex in nature
and is estimated at more than 400 effort hours. Projects that fall in the middle are
considered medium projects, and will typically use a customized SEM for
development of the system. Section 2.2.2 also offers guidance on customizing
the SEM – giving guidance on which SEM templates to use, based on project
work type.

The project manager has the discretion to use SEM Express for slightly larger
projects if he/she feels the complexity is such that SEM Express is preferable.

If at any time the project manager feels he/she need to have more process
guidance, he/she has the discretion to add processes and/or templates from the full
SEM to meet the documentation/approval needs of the project. It is also
acceptable to switch from SEM Express to a customized SEM mid-stream if the
project warrants such a change, due to increased scope, inaccurate initial
estimates, etc.

The following SEM Tailoring Matrix is designed to guide the project /
development manager in selecting the relevant components of the Systems
Engineering Methodology for use in their project.

This matrix is used to identify SEM templates and processes required for a given
project size.

2.2.1 Tailoring Guidance Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 21

SEM Tailoring Matrix

NOTES:
1.) “If Applicable” means the template is required if the project has impact on that area, such as training, contract

management, or infrastructure changes.
2.) It is assumed that if “master” documents exist for the system, those master documents will be updated and attached to the

current SEM / SEM Express documents, with the new changes noted.

Template /
Process

Document
Reference

Small, Straight-
Forward Project
-SEM Express-

Medium Project
-Customized SEM-

Large Project
-SEM- Guidance

EA Solution
Assessment

SEM Touch
Point
(Solution
Assessment
Worksheet)

Not Applicable

Required if no existing
EA Solution
Assessment is on file
with EA or if
proposing changes to
the one on file.

Required if no
existing EA Solution
Assessment is on file
with EA or if
proposing changes to
the one on file.

Check with an
Enterprise
Architecture
representative if
unsure.

Maintenance
Plan SEM-0301

Integrated into SEM
Express Initiation,
Requirements, and
Design Plan.

New plan required or
updates to original
plan, if available.

New plan required or
updates to original
plan, if available.

Software
Configuration
Management
Plan

SEM-0302

Integrated into SEM
Express Initiation,
Requirements, and
Design Plan.

New plan required or
updates to original
plan, if available.

New plan required or
updates to original
plan, if available.

Requirements
Traceability
Matrix

SEM-0401

Not Required.
Integrated into SEM
Express Initiation,
Requirements, and
Design Plan.

Required Required

Requirements
Specification SEM-0402

Integrated into SEM
Express Initiation,
Requirements, and
Design Plan.

New specification
required or updates to
original specification,
if available

Required

Requirements
Management
Checklist

SEM-0403 Not Required Not Required Required

Functional
Design
Document

SEM-0501

Integrated into SEM
Express Initiation,
Requirements, and
Design Plan.

New design required
or updates to original
design, if available

New design required
or updates to original
design, if available

Conversion
Plan SEM-0601

Integrated into SEM
Express Initiation,
Requirements, and
Design Plan.

Required if converting
existing data

Required if
converting existing
data

Test Plan SEM-0602

Integrated into SEM
Express Initiation,
Requirements, and
Design Plan.

Required Required

Test Report SEM-0603

Integrated into SEM
Express Initiation,
Requirements, and
Design Plan.

Required Required

2.2.1 Tailoring Guidance Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 22

Template /
Process

Document
Reference

Small, Straight-
Forward Project
-SEM Express-

Medium Project
-Customized SEM-

Large Project
-SEM- Guidance

System Design
Document SEM-0604

Integrated into SEM
Express Initiation,
Requirements, and
Design Plan.

New design document
required or updates to
original design
document, if available

Required

System Design
Checklist SEM-0605 Not Required Not Required Required

Software
Testing
Checklist

SEM-0606 Not Required Not Required Required

Transition
Plan SEM-0701

Integrated into SEM
Express Construction
and Testing Plan.

If Applicable Required

Required if new
staffing or
operational
procedures are
identified for
operations staff,
maintenance staff,
or client staff

Installation
Plan SEM-0702

Integrated into SEM
Express Construction
and Testing Plan.

Required Required

Training Plan SEM-0703
Integrated into SEM
Express Construction
and Testing Plan.

If Applicable Required

Required if new
staffing or
training needs are
identified

Training
Checklist SEM-0704 Not Required If Applicable Required

Integration and
System
Testing
Checklist

SEM-0801 Not Required Required Required

Error
Reporting and
Tracking
Checklist

SEM-0802 Not Required Not Required Required

PreAcceptance
Checklist SEM-0803 Not Required Not Required Required

Testing
Package
Checklist

SEM-0804
Integrated into SEM
Express Construction
and Testing Plan.

Required Required

User
Acceptance
Checklist

SEM-0805
Integrated into SEM
Express Construction
and Testing Plan.

Required Required
Used for client
signoff of the
completed system

Structured
Walkthrough
process

Structured
Walkthrough
Process
Guide

Required for both
Initiation,
Requirements, and
Design Plan and
Construction and
Testing Plan

Required Required

Structured
Walkthroughs are
required for all
major deliverables

Stage Exit
process

Stage Exit
Process
Guide

Required for each
stage

Required for each
stage

Required for each
stage

2.2.1 Tailoring Guidance Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 23

Template /
Process

Document
Reference

Small, Straight-
Forward Project
-SEM Express-

Medium Project
-Customized SEM-

Large Project
-SEM- Guidance

Security Plan
SEM Tough
Point (DIT-
0170)

If Applicable If Applicable Required

Infrastructure
Services
Request

SEM Touch
Point (DIT
184)

If Applicable If Applicable Required

Contracts and
Procurement
documents

SEM Touch
Point (DIT-
0153, DIT-
0015A, DIT-
0015B)

If Applicable If Applicable If Applicable

Business
Continuity
Plan

SEM Touch
Point If Applicable If Applicable Required

2.2.2 Work Type Definitions Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 24

Section: 2.2.2 Work Type Definitions

Description: There are 6 work types currently available within the SEM. Work types can be identified
by either an alphabetic character designation or by a descriptive name. See Exhibit 2.2.2 Work Type
Selection Diagram on page 28 to determine the work type that applies.

The work types documented in the SEM include the following:

(A) Break/Fix

The Break/Fix work type is used if there has been an interruption of a critical
service to a client. An action is required and a solution must be put in place,
even if the solution is temporary. The problem must be investigated to
determine the root cause. The permanent solution to the problem may result
in the initiation of another work type.

Examples:
 Production abend
 Loss of on-line production system
 Incorrect or missing customer data
 Hardware malfunction
 Network lines down

Use your current process to handle this work type.

(B) Enhancement/Maintenance
The Enhancement/Maintenance work type applies to an application system
modification involving process changes and/or data structure changes. There
are no changes to hardware or software platforms. This work type assumes
that programs will be changed or created.

Examples:
 Changing a business rule
 Adding or changing edit checks for validating data
 Changing or creating a report layout
 Changing or creating an update/display screen
 Creating a new data structure
 Changing the field length of a data structure

For this work type, the following SEM templates need to be completed:

Test Plan Template (SEM-0602)
Test Report Template (SEM-0603)
Transition Plan Template (SEM-0701)

For this work type the, following SEM templates will need to be revised, or
created if they do not currently exist:

2.2.2 Work Type Definitions Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 25

Requirements Specification Template (SEM-0402)
Functional Design Template (SEM-0501)
System Design Template (SEM-0604)
Security Plan Template (DIT-0170)

For this work type, the following SEM templates may be revised or created as
needed:

Requirements Traceability Matrix (SEM-401)
PMM Charter (PMM-02) / Project Plan (PMM-03 or PMM-03 Exp)
Training Plan (SEM-0703)
Training Checklist (SEM-0704)

(C) New Development
The New Development work type applies to the development of a new
application system.

Examples:
 Developing a new Web application system
 Developing a new Desktop application system

For this work type, the following SEM templates need to be completed:

Software Configuration Management Plan (SEM-302)
Security Plan (DIT-170)
Solution Assessments
PMM Charter (PMM-02) / Project Plan (PMM-03 or PMM-03 Exp)
Requirements Traceability Matrix (SEM-401)
Requirements Specification (SEM-402)
Functional Design Document (SEM-501)
System Design Document (SEM-604)
Test Plan (SEM-602)
Test Reports (SEM-603)
Transition Plan (SEM-701)
Training Plan (SEM-703)

For this work type the, following SEM templates will need to be revised, or
created if they do not currently exist:

Business Continuity Planning documentation

For this work type, the following SEM templates may be revised or created as
needed:

Maintenance Plan (SEM-301)
Procurement Docs (DIT-153, DIT-15a, DIT-15b)

2.2.2 Work Type Definitions Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 26

Requirements Management Checklist (SEM-403)
Conversion Plan (SEM-601)
System Design Checklist (SEM-605)
Software Testing Checklist (SEM-606)
Training Checklist (SEM-704)

(D) Commercial Off The Shelf (COTS) Implementation
The COTS Implementation work type applies to the implementation of an
existing application system. This includes the implementation of vendor
provided "turn key" applications.

Examples:
 COTS Application
 ERNIE (DEQ)

For this work type, the following SEM templates need to be completed:

Security Plan (DIT-170)
Procurement Documents (DIT-153, DIT-15a, DIT-15b)
Solution Assessments
Requirements Traceability Matrix (SEM-401)
Requirements Specification (SEM-402)
Test Plan (SEM-602)
Test Reports (SEM-603)
Installation Plan (SEM-702)
Training Plan (SEM-703)

For this work type the, following SEM templates will need to be revised, or
created if they do not currently exist:

Business Continuity Planning documentation

For this work type, the following SEM templates may be revised or created as
needed:

Maintenance Plan (SEM-301)
Software Configuration Management Plan (SEM-302)
PMM Charter (PMM-02) / Project Plan (PMM-03)
Requirements Management Checklist (SEM-403)
Conversion Plan (SEM-601)
Software Testing Checklist (SEM-606)
Training Checklist (SEM-704)

(E) Application Migration
The Application Migration work type applies to the migration of an
application to a new hardware or software platform. Conversion programs
may be necessary. There are no changes to processes or data structures.

2.2.2 Work Type Definitions Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 27

Examples:
 Migrating an application from one data center to another data center
 Porting an application from a PC UNIX platform to a Sun UNIX platform
 Porting an application from a NT 4 server to Windows 2003 server cluster
 Porting a database from Oracle to SQL Server

For this work type, the following SEM templates need to be completed:

Solution Assessments
Conversion Plan (SEM-0601)
Test Plan (SEM-0602)
Test Report (SEM-0603)

For this work type the, following SEM templates will need to be revised, or
created if they do not currently exist:

Security Plan (DIT-170)
Business Continuity Planning documentation
Requirements Traceability Matrix (SEM-0401)
Requirements Specification (SEM-0402)

For this work type, the following SEM templates may be revised or created as
needed:

Procurement Documents (DIT-153, DIT-15a, DIT-15b)
PMM Charter (PMM-02) / Project Plan (PMM-03 or PMM-03 Exp)
Requirements Management Checklist (SEM-0403)

Study
The Study work type is used to evaluate a client's business problem or opportunity
which result in recommended solutions. These solutions may not always result in
system related work.

Examples:
• Providing a recommendation to decrease turn around time for accounts

payable invoices
• Providing a recommendation for new application systems to replace old

application systems.

For this work type, the following SEM templates need to be completed:

Requirements Specification (SEM-0402)
Solution Assessments

2.2.2 Work Type Definitions Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 28

Exhibit 2.2.2 Work Type Selection Diagram

Start

Has there been an
interruption of a critical

service to a client?

Does the
project require

changes to an existing
application
system?

Does the
project require more

than the evaluation of a
client’s business

problem?

Emergency
Action Work

Type “A”

System Change
Work Type “B”

Does the
project require the
development of a

new system?

System
Development

Work Type “C”

Study Work Type “F”

Yes

No

Yes

No

Yes Yes

No
No

COTS
Implementation
Work Type “D”

Application Migration
Work Type “E”

See SUITE-SEM
Local

Representative

Does the
project require the

implementation of an
existing system?

Does the
project require the

migration of an existing
system to a new

hardware/software
platform?

Yes

No

Yes

No

2.3 Development Techniques Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 29

Section: 2.3 Development Techniques

Description: This section provides descriptions of some development techniques that can be

used with the SEM. The descriptions include high-level instructions on how to
adapt the lifecycle stages to accommodate the development technique. The
descriptions provided here are not intended to be a comprehensive list of
development techniques.

Segmented
Development: NOTE: The term “segment” is used here to avoid confusion between project and

production phases.

 Segmented development is most often applied to large information systems

engineering projects where the project requirements can be divided into functional
segments. Each segment becomes a separate project and provides a useful subset
of the total capabilities of the full product. This segmenting serves two purposes:
to break a large development effort into manageable pieces for easier project
management and control; and to provide intermediate work products that form the
building blocks for the complete product.

The lifecycle processes and activities are applied to each segment. The overall
system and software objectives are defined, the system architecture is selected for
the overall project, and a Project Plan for development of the first segment is
written and approved by the system owner.

Segments are delivered to the system owner for evaluation or actual operation.
The results of the evaluation or operation are then used to refine the content of the
next segment. The next segment provides additional capabilities. This process is
repeated until the entire product has been developed. If significant problems are
encountered with a segment, it may be necessary to reexamine and revise the
project objectives, modify the system architecture, update the overall schedule, or
change how the segments are divided.

Two major advantages of this approach are: the project manager can demonstrate
concrete evidence that the final product will work as specified; and users will
have access to, and use of, segments or functions prior to the delivery of the entire
product.

Spiral
Development: Spiral development repeats the planning, requirements, and functional design

stages in a succession of cycles in which the project's objectives are clarified,
alternatives are defined, risks and constraints are identified, and a prototype is
constructed. The prototype is evaluated and the next cycle is planned.

2.3 Development Techniques Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 30

The project objectives, alternatives, constraints, and risks are refined based on this
evaluation, then an improved prototype is constructed. This process of refinement
and prototyping is repeated as many times as necessary to provide an
incrementally firm foundation on which to proceed with the project.

The lifecycle activities for the Initiation and Planning, Requirements Definition,
and Functional Design Stages are repeated in each cycle. Once the design is firm,
the lifecycle stages for System Design, Construction, and Testing are followed to
produce the final product.

Rapid
Prototyping: Rapid prototyping can be applied to any information systems development

methodology (e.g., segmented, spiral.) Rapid prototyping is recommended for
systems development that is based on a new technology or evolutionary
requirements.

With the rapid prototyping technique, the most important and critical
requirements are defined based on current knowledge and experience. A quick
design addressing those requirements is prepared, and a prototype is coded and
tested. The purpose of the prototype is to gain preliminary information about the
total requirements and confidence in the correctness of the design approach.
Characteristics needed in the final product, such as efficiency, maintainability,
capacity, and adaptability might be ignored in the prototype.

The prototype is evaluated, preferably with extensive user participation, to refine
the initial requirements and design. After confidence in the requirements and
design approach is achieved, the final product is developed. The prototype might
be discarded, or a portion of it used to develop the final product.

The normal documentation requirements are usually postponed with prototyping
efforts. Typically, the project team, project stakeholders, and system owner agree
that the prototype will be replaced with the actual product and required support
documentation after proof of the model. The system that replaces the prototype
should be developed using the lifecycle processes and activities.

Iterative
Technique: The iterative technique is normally used to develop products piece by piece. Once

the system architecture and functional or conceptual design are defined and
approved, system functionality can be divided into logically related pieces called
"drivers."

2.3 Development Techniques Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 31

In iterative fashion, the project team performs system design, code, unit test, and
integration test activities for each driver, thereby delivering a working function of
the product. These working functions or pieces of the product are designed to fit
together as they are developed. This technique allows functions to be delivered
incrementally for testing so that they can work in parallel with the project team. It
also enables other functional areas, such as documentation and training, to begin
performing their activities earlier and in a more parallel effort. In addition, the
iterative technique enables progress to be visible earlier, and problems to be
contained to a smaller scope.

With each iterative step of the development effort, the project team performs the
lifecycle processes and activities.

Rapid Application
Development: Rapid Application Development (RAD) is a method for developing systems

incrementally and delivering working pieces every 3 to 4 months, rather than
waiting until the entire project is constructed before implementation. Over the
years, many information technology projects failed because by the time the
implementation took place, the business had changed.

RAD employs a variety of automated design and development tools, including
Computer-Aided Software Engineering (CASE), advanced generation languages,
visual development, and graphical user interface (GUI) builders, which get
prototypes up and running quickly. RAD focuses on personnel management and
user involvement as much as on technology.

Joint Application
Development: Joint Application Development (JAD) is a RAD concept that involves cooperation

between the designer of a computer system and the end user to develop a system
that meets the user’s needs exactly. It complements other system analysis and
design techniques by emphasizing participative development among system
owners, users, designers, and builders. During JAD sessions for system design,
the system designer will take on the role of facilitator for possibly several full-day
workshops intended to address different design issues and deliverables.

Object-Oriented
Development: Object-oriented development focuses on the design of components that mimic the

real world. A component that adequately mimics the real world is much more
likely to be used and reused. The approach emphasizes how a system operates, as
opposed to analysis, which is concerned with what a system is capable of doing.
One of the most important advantages in using an object-oriented approach is the
ability to reuse components. Traditional practices surrounding development often
mitigate against reuse. Short-term goals are stressed because today’s milestones
must be achieved before any thought can be given to milestones that may be
months or years away.

2.3 Development Techniques Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 32

 Borrowed or reused software code is often code that has already been tested, and
in the end, may translate into cost savings. Object-oriented development may
make code reuse much easier but, the amount of actual reuse may still depend on
the motivation of the project managers, designers and developers involved. Code
reuse can also lead to faster development. Object-oriented systems are easier to
maintain because their structures are inherently decoupled. This usually leads to
fewer side effects when changes have to be made. In addition, object-oriented
systems may be easier to adapt and scale (i.e., large systems can be created by
assembling reusable subsystems).

Typically, the object-oriented process follows an evolutionary spiral that starts
with customer communication, where the problem is defined. The technical work
associated with the process follows the iterative path of analysis, design,
construction, and testing. The fundamental core concepts in object-oriented
design involve the elements of classes, objects, and attributes. Understanding the
definition and relationships of these elements is crucial in the application of
object-oriented technologies.

It is recommended that the following object-oriented issues be well understood in
order to form a knowledge base for the analysis, design, testing, and
implementation of systems using object-oriented techniques.

• What are the basic concepts and principles that are applicable to object-

oriented thinking?

• How should object-oriented projects be planned and managed?

• What is object-oriented analysis and how do its various models enable a
systems engineer to understand classes, their relationships and behavior?

• What is a “use case” and how can it be applied to analyze the requirements

of a system?

• How do conventional and object-oriented approaches differ?

• What are the components of an object-oriented design model?

• How are “patterns” used in the creation of an object-oriented design?

• What are the basic concepts and principles that are applicable for testing
of object-oriented systems?

• How do testing strategies and test case design methods change when an

object-oriented system is considered?

• What technical metrics are available for assessing the quality of object-
oriented systems?

2.3 Development Techniques Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 33

Work Product: The work products described in the SEM will be the same for many of the

development techniques and it is the responsibility of the project manager to adapt
the work products accordingly and document adaptations in the Project Plan.

References: SOM Project Management Methodology:

http://www.michigan.gov/projectmanagement See Section 3 – Project Planning
Phase.

2.4 Commercial-Off-The-Shelf (COTS) Products Based Projects Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 34

Section: 2.4 Commercial-Off-The-Shelf (COTS) Products Based Projects

Description: There is a current trend in information systems development to make greater use

of Commercial-Off-The-Shelf (COTS) products, that is, to buy a ready-made
system from a software manufacturer rather than developing it in-house from
scratch. This carries with it a sense of getting a system that can do the job at a
reasonable cost, and getting new functions in subsequent releases over time. This
practice is especially encouraged and sometimes mandated in government
agencies. There can be many benefits in using COTS products including
improving quality and performance, developing and delivering solutions more
quickly, maintaining systems more cost effectively, and standardizing across the
organization. The main characteristics of a COTS product are that it exists, is
known to be proven, is available to the general public, and can be bought, leased,
or licensed.

COTS and Open
Systems: Many initiatives are under way in both private industry and government agencies

including the State of Michigan to promote the use of an open systems approach,
thereby anticipating even greater benefits than can be obtained from the use of
COTS products alone. These initiatives are occurring because just buying COTS
does not necessarily result in an “open” system. COTS products are not
necessarily open, and they do not necessarily conform to any recognized interface
standards. Therefore, it is possible that using a COTS product commits the user to
proprietary interfaces and solutions that are not common with any other product,
component, or system.

If the sole objective is the ability to capture new technology more cheaply, then
the use of COTS products that are not open may satisfy requirements. However,
considering that the average COTS component is upgraded every 6 to 12 months
and new technology appears on the scene about every 18 to 24 months, any
money that is saved by procuring a COTS product with proprietary interfaces may
quickly be lost in maintenance as products and interfaces change.

In the midst of all this, interface standards provide a source of stability. Without
such standards every change in the marketplace can impose an unanticipated and
unpredictable change to systems that use products found in the marketplace.

COTS Planning
Considerations: A COTS-based systems solution approach requires new and different investments

including market research on available and emerging products and technologies,
and COTS product evaluation and selection. The key to determining if the best
solution is one which includes COTS products is to weigh the risks of straying
from the three basic criteria - fully-defined, available to the public, and
maintained according to group consensus - against what is to be gained over the

2.4 Commercial-Off-The-Shelf (COTS) Products Based Projects Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 35

 long term. An open systems approach requires investments in the following areas
early in a project’s lifecycle and on an ongoing basis:

• Market surveys to determine the availability of standards
• Selection of appropriate applicable standards
• Selection of standards-compliant implementations

These costs/activities are the necessary foundation for creating systems that serve
current needs and yet can grow and advance as technology advances and the
marketplace changes. On an ongoing basis, it is important for project teams to
stay informed in this area, with particular focus on:

• When revisions to specific standards are scheduled for release
• What changes are proposed in the new revision
• When ballots on the revisions are going to occur
• Where the implementations are headed

Skills
Considerations: The depth of understanding and technical and management skills required on a

project team are not necessarily diminished or decreased because of the use of
COTS or open systems. The skills and understanding needed increase because of
the potential complexity of integration issues, the need to seriously consider
longer-term system evolution as part of initial development, and the need to make
informed decisions about which products and standards are best.

Types of COTS
Solutions: COTS products can be applied to a spectrum of system solutions, including (but

not limited to) the following:

• Neatly packaged solutions such as Microsoft Office that require no
integration with other components.

• COTS products that support the information management domain, such as

Oracle or SQL Server. These systems typically consist of both COTS
products and customized components, with some “glue” code to enable
them to work cooperatively.

• Systems comprised of a mix of COTS products and non-commercial

products that provide large-scale functionality that is otherwise not
available. Such systems typically require larger amounts of “glue” code to
integrate the various components.

2.4 Commercial-Off-The-Shelf (COTS) Products Based Projects Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 36

COTS Impact
on the Project
Lifecycle: All systems engineering projects include planning, requirements definition,

architecture definition, system design, code, test, and system integration activities.
The use of COTS products has an impact on project lifecycle activities. The most
fundamental change is that the system is now composed from building blocks that
may or may not work cooperatively directly out of the box. The project team will
require skilled engineering expertise to determine how to make a set of
components work cooperatively - and at what cost.

This fundamental shift from development to composition causes numerous
technical, enterprise, management, and business changes. Some of these changes
are obvious, whereas others are quite subtle.

Requirements Definition
For a COTS-based system, the specified requirements must be sufficiently
flexible to accommodate a variety of available commercial products and their
evolution. To write such requirements, the author should be sufficiently familiar
with the commercial marketplace to describe functional features for which actual
commercial products exist.

There is a critical relationship among technology and product selection,
requirement specification, and architecture definition. If the architecture is
defined to fulfill the requirements and then the COTS product is selected, there
may be only a few or no available products that fit within the chosen architecture.
Pragmatically, three essential elements--requirements, architecture, and product
selection--must be worked in parallel with constant trade-offs among them.

Adaptation/Integration
Assembling COTS products presents new challenges. Although COTS products
are attempting to simulate the "plug and play" capability of the hardware world, in
reality, they seldom plug into anything easily. Most products require some
amount of adaptation and integration to work harmoniously with other
commercial or custom components in the system. The typical solution is to adapt
each COTS product through the use of "wrappers," "bridges," or other
"glueware." It is important to note that adaptation does not imply modification of
the COTS product. Adaptation can be a complex activity that requires technical
expertise at the detailed system and specific COTS component levels. Adaptation
and integration must take into account the interactions among custom
components, COTS products, any non-developmental item components, any
legacy code, and the architecture including infrastructure and middleware
elements.

2.4 Commercial-Off-The-Shelf (COTS) Products Based Projects Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 37

 Testing
As the testing of COTS-based systems is considered, it must be determined what
levels of testing are possible and needed. A COTS product is a "black box" and
therefore changes the nature of testing. A system may use only a partial set of
features of a given COTS product. In developing a test strategy and test plans,
consideration should be given to issues such as should only the features used in
the system be tested, and how does one test for failures in used features that may
have abnormal behavior due to unknown dependencies between the used and
unused features of a COTS product?

Maintenance
Maintenance also changes in very fundamental ways; it is no longer solely
concerned with fixing existing functionality or incorporating new mission needs.
Vendors update their COTS products on their schedules and at differing intervals.
Also, a vendor may elect to eliminate, change, add, or combine features for a
release. Updates to one COTS product, such as new file formats or naming
convention changes, can have unforeseen consequences for other COTS products
in the system. To further complicate maintenance, all COTS products will require
continual attention to license expirations and changes. All of these events
routinely occur. All of these activities may (and typically do) start well before an
organization installs the system or a major upgrade. Pragmatically, the distinction
between development and maintenance all but disappears.

Adapting the
SEM for COTS
Projects: All systems engineering projects have a project lifecycle, require project

management activities such as project planning, requirements definition, project
tracking, software configuration management, and quality assurance; and produce
deliverables such as project plans, requirements specifications, software
configuration management plans, and test plans. At the same time, each project,
whether COTS or traditional, can vary in scope, duration, technology used or
operating platform. The SEM can be used as the project lifecycle for COTS-based
projects as well as for traditional systems development and maintenance projects
where all of the code is developed “in-house.”

The key to using the SEM effectively for COTS projects lies in adapting the
lifecycle stages and deliverables to best suit the individual needs and
characteristics of each particular project. See Exhibit 2.4-1, Example of SEM
Adapted for COTS Projects, for an example of how to adapt the SEM for a COTS
project. Stages should be combined as appropriate if, for example, a project will
have a relatively small scope, and/or short duration, and/or will use known
technology. On the other hand, the traditional number of stages may be
appropriate for large projects with new technology and long duration.

2.4 Commercial-Off-The-Shelf (COTS) Products Based Projects Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 38

 Deliverables may be added to, or deleted from the standard list prescribed by the
SEM (see Exhibit 2.0-1, SEM Overview Diagram on page 13). For COTS-based
projects, the lifecycles stages will typically include “evaluation,” “selection,”
“customization,” and “integration,” and the project deliverables will typically
include documents such as “Products to be Evaluated,” and “COTS Solution
Recommendations.” See Exhibit 2.4-1 Example of SEM Adapted for COTS
Projects.

Documenting
Deviations: The adaptation (or deltas) from the standard SEM prescribed stages and

deliverables are known as deviations. These deviations should be documented
with an explanation in the project plan. Deviations from prescribed project
deliverables should be documented with an explanation, and a statement, which
describes how project risk is not elevated if a prescribed deliverable will not be
produced.

Resources: The following references are from the features section of the Carnegie Mellon

University Software Engineering Institute Website and were used in the
preparation of this chapter:

• Software Technology Review: COTS and Open Systems

• Monthly Features: The Opportunities and Complexities of Applying

COTS

• Monthly Features: Discussion with Members of the SEI COTS-Based
Systems Initiative

• Software Technology Review: Components-based Software
Development/COTS integration

2.4 Commercial-Off-The-Shelf (COTS) Products Based Projects Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 39

Exhibit 2.4-1 Example of SEM Adapted for COTS Projects

Deliverables

SEM Stages

SEM/COTS Project
 Stages

SEM/COTS Project

Planned Deliverables Adaptation vs. SEM Deliverables

Initiation & Planning

Initiation & Planning

• Security Plan (PMM)
• Project Plan (includes WBS) (PMM)

• Prototype instead of Concept Document (PMM)
• Software Configuration Management Plan moved to

Requirements Definition

Requirements Definition

Requirements Definition

• Functional Requirements Document
• Business Continuity Plan
• Products to be Evaluated
• Software Configuration Mgmt Plan
• Preliminary Data Requirements
• Requirements Traceability Matrix

• The System and Acceptance Test Requirements will be

developed in the COTS Evaluation and Selection Stage

Functional Design

System Design

Evaluation and Selection

• COTS Solution/Recommendation
• System Architecture
• System/Acceptance Test

Requirements
• Conversion Plan

• Functional Design and System Design stages are

combined
• System Architecture document replaces System Design

document
• Logical Model, Physical Model, Construction

Specifications, Coding Practices not applicable

Construction

Testing

Customization, Testing

• Solution Baseline
• Training Plan
• User Documentation
• System Maint. Documentation
• Transition Plan
• Integration Test Checklist
• Test Report
• Installation Plan
• Pre-Acceptance Checklist

• The Construction and Testing stages are combined
• Integration portion of the Test Plan not required

Implementation

Implementation

• User Training Materials
• User Acceptance Checklist
• Operational System

• No Deviations

2.5 Quality Reviews Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 40

Section: 2.5 Quality Reviews

Description: This section describes the quality review and assurance mechanisms that are used

with the SEM. The purpose of quality reviews is to assure that the established
information systems development and project management processes and
procedures are being followed effectively, and that exposures and risks to the
current project plan are identified and addressed. The quality reviews facilitate the
early detection of problems that could affect the reliability, maintainability,
availability, integrity, safety, security, or usability of the software product. The
quality reviews enhance the quality of the end work products and deliverables of a
project.

 Work products are subject to quality reviews. Quality reviews are conducted as

Peer Reviews, Structured Walkthroughs (SWT) and Stage Exits. The quality
review used depends on the work product being reviewed, the point of time within
the project stage, and the purpose of the review.

Review Process: Peer Review
 A peer review is an informal review of information systems engineering work

products, including documentation, which can be conducted at any time at the
discretion of the work product developer. These informal reviews are performed
by the developer's "peers"-- frequently other developers working on the same
project. Informal reviews can be held with relatively little preparation and follow
up activity. Review comments are informally collected and the product developer
determines which comments require future action. Some of the work products
prepared are considered interim work products as they feed into a major
deliverable or into another stage. Interim work products are ideal candidates for
peer review; however, all work products benefit from peer reviews.

 Responsibility
 Team Members

Review Process: Structured Walkthrough
 The Structured Walkthrough (SWT) is a more formal review and is prescribed by

the SEM for all project deliverables. SWTs are used to find and remove errors
from work products early and efficiently, and to develop a better understanding of
defects that might be prevented. They are very effective in identifying design
flaws, errors in analysis or requirements definition, and validating the accuracy
and completeness of deliverable work products.

 SWTs are conducted during all stages of the project lifecycle. They are used

during the development of work products identified as deliverables for each stage
(see Exhibit 2.0-1 SEM Overview Diagram on page 13), such as requirements,
specifications, design, code, test cases (scripts), and documentation. SWTs are
used after the work products have been completed to verify the correctness and

2.5 Quality Reviews Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 41

the quality of the finished product. They should be scheduled in the work
breakdown structure developed for the project plan, where, in practice, they are
sometimes referred to generically as reviews. SWTs should also be scheduled to
review small, meaningful pieces of work. The progress made in each lifecycle
stage should determine the frequency of the walkthroughs; however, they may be
conducted multiple times on a work product to ensure that it is free of defects.

 SWTs can be conducted at various times in the development process, in various

formats, with various levels of formality, and with different types of participants.
They typically require some advance planning activities, a formal procedure for
collecting comments, specific roles and responsibilities for participants, and have
prescribed follow-up action and reporting procedures. Frequently reviewers
include people outside of the developer's immediate peer group.

 Responsibility
 Project Manager, Team Members, Work Product Author, Reviewers

 Work Products
 A SWT Meeting Record (DIT-0187) is available for the reviewers to record errors

found prior to the walkthrough session, and for the scribe to record information
discussed during the walkthrough. Upon completion, the presenter or author of
the work product compiles a SWT Management Summary Report (DIT-0188) and
a copy is placed in the Project File.

 Reference
 The State of Michigan guidance document titled Structured Walkthrough Process

Guide provides a procedure and sample forms that can be used for SWTs. This
document is available on the MDIT SUITE website.

Review Process: Stage Exit
 The Stage Exit is a process for ensuring a project meets the project standards and

milestones identified in the project plan. The Stage Exit is conducted by the
project manager with the project stakeholders (e.g., system owner and the
following points of contact: user, quality assurance, security, architecture and
standards, project manager’s manager, and platform). It is a high-level evaluation
of all work products developed in a lifecycle stage. It is assumed that each
deliverable has undergone several peer reviews and/or SWTs as appropriate prior
to the Stage Exit process. The Stage Exit focuses on the satisfaction of all
requirements for the stage of the lifecycle, rather than the specific content of each
deliverable.

 The goal of a Stage Exit is to secure the approval of designated key individuals to

continue with the project and to move forward into the next lifecycle stage. The
approval is a sign-off of the deliverables for the current stage of development
including the updated project plan. It indicates that all qualifications (issues and

2.5 Quality Reviews Lifecycle Model

September 2008 Lifecycle Model Chapter 2
 Page 42

concerns) have been closed or have an acceptable plan for resolution. At a Stage
Exit meeting, the project manager communicates the positions of the key
personnel, along with qualifications raised during the stage exit process, and the
action plan for resolution to the project team, stakeholders, and other interested
meeting participants. The Stage Exit meeting is documented in summary form.
Only one Stage Exit for each stage should be necessary to obtain approval
assuming all deliverables have been accepted as identified in the project plan.

 A Stage Exit is an effective project management tool that is required for all

projects regardless of size. For small projects, stages can be combined and
addressed during one Stage Exit.

 Responsibility
 Project Manager.

 Work Products
 A Stage Exit Position Response form (DIT-0189) is completed by each approver.

 A summary of the Stage Exit meeting is prepared by the project manager or a
designee and distributed to the meeting attendees. The summary identifies any
issues and action items needed to obtain concurrence prior to proceeding to the
next lifecycle stage.

Reference: The MDIT guidance document titled Stage Exit Process Guide provides a

procedure and sample report form that can be used for Stage Exits. This document
is available on the MDIT SUITE website.

